Computational Hydrodynamic Stability and Flow Control Based on Spectral Analysis of Linear Operators
نویسنده
چکیده
This paper considers the analysis and control of fluid flows using tools from dynamical systems and control theory. The employed tools are derived from the spectral analysis of various linear operators associated with the Navier–Stokes equations. Spectral decomposition of the linearized Navier-Stokes operator, the Koopman operator, the spatial correlation operator and the Hankel operator provide a means to gain physical insight into the dynamics of complex flows and enables the construction of low-dimensional models suitable for control design. Since the discretization of the Navier-Stokes equations often leads to very largescale dynamical systems, matrix-free and in some cases iterative techniques have to be employed to solve the eigenvalue problem. The common theme of the numerical algorithms is the use of direct numerical simulations. The theory and the algorithms are exemplified on flow over a flat plate and a jet in crossflow, as prototypes for the laminar-turbulent transition and three-dimensional vortex shedding.
منابع مشابه
Spectral Differentiation Operators and Hydrodynamic Models for Stability of Swirling Fluid Systems
In this paper we develop hydrodynamic models using spectral differential operators to investigate the spatial stability of swirling fluid systems. Including viscosity as a valid parameter of the fluid, the hydrodynamic model is derived using a nodal Lagrangean basis and the polynomial eigenvalue problem describing the viscous spatial stability is reduced to a generalized eigenvalue problem usin...
متن کاملEntropy Generation of Variable Viscosity and Thermal Radiation on Magneto Nanofluid Flow with Dusty Fluid
The present work illustrates the variable viscosity of dust nanofluid runs over a permeable stretched sheet with thermal radiation. The problem has been modelled mathematically introducing the mixed convective condition and magnetic effect. Additionally analysis of entropy generation and Bejan number provides the fine points of the flow. The of model equations are transformed into non-linear or...
متن کاملبررسی ناپایداری جریان های دوبعدی موازی در سیالات ویسکوالاستیک با استفاده از روش های شبه طیفی
In the present work, the effect of fluid’s elasticity was investigated on the hydrodynamic instability of Blasius flow. To determine the critical Reynolds number as a function of the elasticity number, a two-dimensional linear temporal stability analysis was invoked. The viscoelastic fluid is assumed to obey the Walters’ B fluid model for which base flow velocity profiles were fortunately avail...
متن کاملApplication of the airflow control by electro-hydrodynamic actuator
The technique used to control the airflow is based on the electro-hydrodynamic actuator which is also called plasma actuator. This actuator ensures the airflow control thanks to the electric wind created by the electrical corona discharge. This ionic wind is developed at the profile surface tangential to the initial free airflow so that it has a significant effect on the boundary layer flow. Th...
متن کاملDynamical stability of cantilevered pipe conveying fluid in the presence of linear dynamic vibration absorber
When the velocity of fluid flow in a cantilevered pipe is successively increased, the system may become unstable and flutter instability would occur at a critical flow velocity. This paper is concerned with exploring the dynamical stability of a cantilevered fluid-conveying pipe with an additional linear dynamic vibration absorber (DVA) attachment. It is endeavoured to show that the stability o...
متن کامل